A Privacy-Protecting Architecture for Collaborative Filtering via Forgery and Suppression of Ratings

نویسندگان

  • Javier Parra-Arnau
  • David Rebollo-Monedero
  • Jordi Forné
چکیده

Recommendation systems are information-filtering systems that help users deal with information overload. Unfortunately, current recommendation systems prompt serious privacy concerns. In this work, we propose an architecture that protects user privacy in such collaborativefiltering systems, in which users are profiled on the basis of their ratings. Our approach capitalizes on the combination of two perturbative techniques, namely the forgery and the suppression of ratings. In our scenario, users rate those items they have an opinion on. However, in order to avoid privacy risks, they may want to refrain from rating some of those items, and/or rate some items that do not reflect their actual preferences. On the other hand, forgery and suppression may degrade the quality of the recommendation system. Motivated by this, we describe the implementation details of the proposed architecture and present a formulation of the optimal trade-off among privacy, forgery rate and suppression rate. Finally, we provide a numerical example that illustrates our formulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Forgery and Suppression of Ratings for Privacy Enhancement in Recommendation Systems

Recommendation systems are information-filtering systems that tailor information to users on the basis of knowledge about their preferences. The ability of these systems to profile users is what enables such intelligent functionality, but at the same time, it is the source of serious privacy concerns. In this paper we investigate a privacy-enhancing technology that aims at hindering an attacker...

متن کامل

A Privacy-Protecting Architecture for Recommendation Systems via the Suppression of Ratings

Recommendation systems are information-filtering systems that help users deal with information overload. Unfortunately, current recommendation systems prompt serious privacy concerns. In this work, we propose an architecture that enables users to enhance their privacy in those systems that profile users on the basis of the items rated. Our approach capitalizes on a conceptually-simple perturbat...

متن کامل

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

Accessibility Evaluation in Biometric Hybrid Architecture for Protecting Social Networks Using Colored Petri Nets

In the last few decades, technological progress has been made important information systems that require high security, Use safe and efficient methods for protecting their privacy. It is a major challenge to Protecting vital data and the ability to threaten attackers. And this has made it important and necessary to be sensitive to the authentication and identify of individuals in confidential n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011